The Bethe Ansatz
1992.Essler.JPA.251992.Essler.JPA.25
F. H. L. Essler and V. E. Korepin and K. Schoutens, Fine structure of the Bethe ansatz for the spin-1/2 Heisenberg XXX model, J. Phys. A: Math. Gen. 25, 4115-4126 (1992), doi:10.1088/0305-4470/25/15/019.
Extended data | |
---|---|
Author | F. H. L. Essler and V. E. Korepin and K. Schoutens |
Title | Fine structure of the Bethe ansatz for the spin-1/2 Heisenberg XXX model |
Journal | J. Phys. A: Math. Gen. |
Volume | 25 |
Pages | 4115-4126 |
Year | 1992 |
doi | 10.1088/0305-4470/25/15/019 |
Publication date | |
Submission date |
BibTeX
@article{1992.Essler.JPA.25, author = {F. H. L. Essler and V. E. Korepin and K. Schoutens}, title = {{Fine structure of the Bethe ansatz for the spin-1/2 Heisenberg XXX model}}, journal = {J. Phys. A: Math. Gen.}, volume = {25}, number = {15}, pages = {4115-4126}, OPTurl = {http://stacks.iop.org/0305-4470/25/4115}, doi = {10.1088/0305-4470/25/15/019}, year = {1992}, abstract = {The authors analyse the Bethe ansatz equations for the two-particle sector of the spin 1/2 Heisenberg XXX model on a one-dimensional lattice of length N. They show that, beginning at a critical lattice length of N=21.86, new pairs of real solutions develop, whereas complex solutions start to disappear. The integers (that appear in the logarithmic form of the Bethe equations) of the new solutions do not fit into the conventional classification scheme. The total number of solutions in the two-particle sector remains unchanged and is in agreement with the claim that the SU(2) extended Bethe ansatz gives a complete set of 2N eigenstates.} }
Annotations
Except where otherwise noted, all content is licensed under a
Creative Commons Attribution 4.0 International License.
Created: 2024-01-18 Thu 14:24