The Bethe Ansatz
Low-temperature limite.h.l.lT
We start by rewriting h.tba1 as
\begin{equation*} \ln (1 + e^{\varepsilon_n (\lambda)/T}) = hn - \pi J a_n (\lambda) + \sum_{m=1}^\infty \left( \delta_{nm} + A_{nm}\right) * \ln (1 + e^{-\varepsilon_m (\lambda)/T}). \end{equation*}As can be seen from the equilibrium conditions (most easily from h.tbaf), all functions \(\varepsilon_n\) with \(n > 1\) are positive-valued for any \(\lambda\), leaving \(\varepsilon_1\) as the only function which suffers a sign change. Considering the \(T \rightarrow 0^+\) limit and writing the positive(resp. negative)-valued parts of \(\varepsilon_1\) as \(\varepsilon_1^{(+)}\) (resp. \(\varepsilon_1^{(-)}\)), we obtain
\begin{equation*} \varepsilon_n (\lambda) = hn - \pi J a_n (\lambda) - A_{n1} * \varepsilon_1^{(-)} (\lambda), \hspace{5mm} n > 1 \end{equation*}for all \(n > 1\) functions, which are fully determined once we solve
\begin{equation*} \varepsilon_1^{(+)} (\lambda) + (1 + A_{11}) * \varepsilon_1^{(-)} (\lambda) = h - \pi J a_1 (\lambda). \end{equation*}Performing a Fourier transformation, [TBC]
Except where otherwise noted, all content is licensed under a
Creative Commons Attribution 4.0 International License.
Created: 2024-01-18 Thu 14:24