The Bethe Ansatz

Dual states a.R.s.d

To define a measure in our Hilbert space, we also introduce the dual pseudovacuum \(\langle 0 | = | 0 \rangle^{\dagger}\), with properties

\begin{equation} \langle 0 | 0 \rangle = 1, \hspace{1cm} \langle 0 | A(\lambda) = a(\lambda) \langle 0 |, \hspace{1cm} \langle 0 | D(\lambda) = d(\lambda) \langle 0 |, \hspace{1cm} \langle 0 | B(\lambda) = 0. \tag{dpv}\label{dpv} \end{equation}

Similarly to states prodBpv, the dual states

\begin{equation} \langle \{ \lambda_j \}_M | \equiv \langle 0 | \prod_{j=1}^M C(\lambda_j) \tag{dpvprodC}\label{dpvprodC} \end{equation}

are eigenstates of the transfer matrix tau with eigenvalue tauev if the set \(\{ \lambda_j \}_M\) satisfies the Bethe equations BER1. This allows us to easily prove the orthogonality condition

\begin{equation} \langle \{ \lambda_j^C \}_M | \{ \lambda_k^B \}_M \rangle = \langle 0 | \prod_{j=1}^M C(\lambda_j^C) \prod_{k=1}^M B(\lambda_k^B) | 0 \rangle = 0, \hspace{5mm} \{ \lambda_j^C \}_M \neq \{ \lambda_k^B \}_M \tag{lClBo}\label{lClBo} \end{equation}

from the fact that

\begin{equation*} \langle \{ \lambda_j^C \}_M | \tau (\lambda) | \{ \lambda_k^B \}_M \rangle = \tau (\lambda | \{ \lambda_j^C \}_M) \langle \{ \lambda_j^C \}_M | \{ \lambda_k^B \}_M \rangle = \tau (\lambda | \{ \lambda_k^B \}_M ) \langle \{ \lambda_j^C \}_M | \{ \lambda_k^B \}_M \rangle \end{equation*}

and that

\begin{equation*} \tau (\lambda | \{ \lambda_j^C \}_M) \neq \tau (\lambda | \{ \lambda_k^B \}_M ), ~~\{ \lambda_j^C \}_M \neq \{ \lambda_k^B \}_M. \end{equation*}

We will consider the normalization of eigenstates explicitly later on, after proving an extremely important theorem due to N. A. Slavnov.




Creative Commons License Except where otherwise noted, all content is licensed under a Creative Commons Attribution 4.0 International License.

Author: Jean-Sébastien Caux

Created: 2024-01-18 Thu 14:24